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The theory of block-type sensing units is reviewed. The two-point method of DTA is 
described and appropriate computation formulae are derived. The failure of the existing block- 
type sensing units to conform to the assumptions of the theory is demonstrated. 

The instrument constant (calibration constant) is by definition the proportion- 
ality coefficient between the experimentally determined heat of reaction and the 
peak area under the differential curve corresponding to this reaction: 

AHt = A H o M  = - K A ,  (1) 

where AHt is the total heat of reaction, J; AHo is the specific heat of reaction, J/g; M 
is the mass of the reactant, g; Kis the calibration constant; and At is the total peak 
area under the DTA curve. The minus sign in Eq. (1) indicates that positive heats of 
reaction correspond to negative peak areas, i.e. in the case of an endothermic 
reaction the DTA curve bends downwards from the base line (towards negative 
temperatures). If A t is expressed in cm 2, the dimension of K is J/cruZ; if it is 
expressed in deg. s, the dimension of K is W/deg. 

To find unknown heats of reaction by means of Eq. (1), it is necessary to 
determine the value of K, i.e. to calibrate the instrument. For this purpose, the 
following methods exist: 

1. A set of standard substances with known heats of transformation are used, 
yielding the value of K in the studied temperature interval by means of Eq. (1). 

2. Instead of a reference material, a calibrated microheater is placed in the 
corresponding cell of the instrument and a known current is passed through it. Kis 
found by the formulae 
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C I U  2 K -  Q - IZRt (a); K -  (b) (2) 
At At 2At 

where Q is the joulean heat evolved in the cell, I is the current intensity, R is the 
resistance of the microheater, and t is the period during which current passes 
through the heater. Formula (2b) is applied in cases when calibration is carried out 
by means of an electrolytic condenser with the known capacity C a, charged from a 
source with voltage U. The condenser is discharged through the microheater, 
evolving heat equivalent to the electric energy of the condenser. 

3. For instruments in which insulated sample holders are applied [1], the tail-end 
of the peak to the right of the end-point of the reaction (the inflexion point) is used, 
and K is found from the formulae 

cdAT. 
dt CAT, 

K -  (a); K -  (b) (3) 
AT. A, 

where C is the total heat capacity of the sample holder and the sample, A. is the area 
of the peak confined within the height of the peak A T,, the base line and the tail-end 

and dA T. of the DTA curve, ~ is the slope of the tangent to the curve at the point with 

peak height A T.. 
4. Constant K is calculated from the known thermophysical and geometric 

parameters of the sample holder and the sample. 
The value of constant Kdepends (in the general case) on many factors, such as the 

experimental temperature, the gas medium in the cell, the state of the sample, the 
geometry of the sample holder, etc. During the change from calibration conditions 
to experimental conditions, some of these factors may change, resulting in a change 
of K to an unknown extent; this major deficiency in calibration methods 1 and 2 is 
eliminated to a certain extent in method 3, for in this method constant K is 
determined directly at the moment of the experiment, in the process of recording the 
thermal curve. With method 4, the accuracy of calibration depends on the extent to 
which the mathematical model by which the explicit expression for constant K is 
derived corresponds to the true DTA instrument. The potential of method 4 has not 
been studied satisfactorily in the literature. An explicit expression for K has been 
developed only for block-type instruments [2-4] for the particular case of heat 
exchange by conduction, without accounting for convection and radiation. In 
principle, various types of DTA instruments are feasible, to each of which a 
particular kinetic equation and instrument constant correspond. In this paper an 
attempt is made to classify DTA instruments on the basis of the physical and 
geometric characteristics of the heat barrier and of the mathematical assumptions 

J. Thermal Anal. 31, 1986 



SHISHKIN: INSTRUMENT CONSTANT 919 

of the theory. The following fundamental types will be discussed below: (a) block 
type without a special heat barrier; (b)block type with a solid heat barrier; 
(c) insulated sample holder with a gas-phase heat barrier; the latter includes several 
sub-types resulting from differences in sample packing in the holder (Fig. 1, types 
I-v). 

1 1' 1 2 3 2' 

TO T, TH 
2 3  

| IV 

1 2 3  

V 
Fig. 1 Schematical representation of  DTA instrument types: I - block-type without special heat 

barrier; I I -  block-type with special heat barrier; I I I -  insulated sample holder with zero 
internal resistance; IV and V - insulated sample holder with non-zero internal resistance 

1. Block type without special heat barrier 

This type is used in traditional (qualitative) DTA. In it, the sample itself plays the 
part of the heat barrier on which the drop of the incremental temperature of the 
reaction measured in the experiment takes place. Its mathematical model is an 
infinite-length cylinder whose surface temperature changes in accordance with the 
linear heating rate, and the incremental temperature of the reaction on the surface 
of the cylinder is equal to zero: (A Tp), = R, = 0. This equality may be considered as 
the definition of the external limit of the heat barrier of the cell, as a surface on 
which the A Tp of the reaction is equal to zero (within experimental error); this limit 
may be shifted, depending on various factors, accompanied by a corresponding 
change in the measured value A Tp and a decrease in the accuracy of the method. 
However, if (as usual) a differential connection scheme is used for the recording of 
A Tp, and no thermal connection exists between the sample cell and the reference cell 
[5], the uncertainty in the position of the external limit of  the heat barrier will be of 
no importance, since in such connection schemes of recording the total value of A Tp 
will appear. 

In the case of cylindric symmetry with an isothermal surface, the heat flow will be 
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directed along the radius vector perpendicular to the surface of the cylinder (cf. Fig. 
1), independent of the angular coordinate, and dependent only on the radius r. 
According to the Fourier law 

dQ _ 2nrl~2s dTs 
dt dr (4) 

where 2~ is the thermal conductivity of the sample, l~ is the height (length) of the 
sample, Ts is the temperature of the sample, and r is the distance from the axis of the 

cylinder to the current point (the surface through which the heat flow ~-t passes). 

Differentiation of Eq. (4) with respect to r results in 

d2Q _ 2nl~2~ dT~ + 2nrl~2s d2T~ (5) 
dt dr dr dr 2 

On the other hand, 

dQ = cQ dVs dTs = cQ2nrls dr dTs (6) 

where d V~ is an elementary volume with specific heat capacity c and density Q. 
Differentiation of Eq. (6) with respect to t and rearrangement yields 

dZQ cQ2nrl~ d~  (6a) 
dt dr 

Solving this equation jointly with Eq. (5) yields the differential equation of thermal 
conductivity for our case: 

dT~_ [d2T, dT,'~ 
dt a~--~-r2 + ~ r /  (7) 

2~ 
where a = - -  is the thermal conductivity of the sample. 

co 
As demonstrated in [3], in a steady-state heating regime, at tp --- const and 

a = const, and with the condition that t > --,R~ the solution of Eq. (7) may be 
a 

written in the form 

R2_rZ, ~ 
T~ = Tn+go t -4a ] (8) 

where TH is the temperature on the sample surface (on the heater wall), and Rn is the 
radius of the sample. It follows from Eq. (8) that the steady-state temperature drop 
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over the sample is 

( T n -  T~ - 4a 

Differentiation of Eq. (8) with respect to r yields 

a L _  _ (8a) 
dr 2a'  \--dr J'=a'~ 2a 

The heat flow entering the sample from the wall of the block, expressed through the 
temperature drop in the sample, is 

This same heat flow gives rise to the temperature increase of the sample at the rate 
~o, and hence we may write 

-d~dQ = R~o eo2~rl,~o dr = co~l,R~o = C, dTHdt (9) 

where Cs is the heat capacity of the sample with volume gRil l .  When the reaction 
starts, the temperature drop in the cylinder will decrease by the incremental 
temperature .4 Tp in the case of exothermic reactions, for which A H < 0, A Tp > 0, 
and increase by ATp in the case of endothermic reactions, for which AH>0,  
A Tp < 0, and the expression for heat flow will assume the form 

dQ 
dt - 4nl,2,[(Tn- To), ,-  A r,] = 

(9a) 
= C dTn -4rd~2,AT~ 

dt 

The heat flow absorbed during the time of the reaction is equal to 

dQ _ dAH dT~ (10) 
dt d~- + C', dt 

From Eqs (9a) and (10), the heat balance of the cell during the reaction is 

dAH = 4rd~2~ATp+ C d(T~- Tu) (11) 
dt dt 

The incremental temperature measured during the experiment is the difference 
between the actual temperature drop and the steady-state drop: 

a t .  = T o -  T x - ( T o -  r,,)., (12) 
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If the hot junction of the thermocouple is located at the centre of the sample, Tp will 
have the maximum possible value and will be defined by Eq. (12). The temperature 
T~ is between To and Tn and is equal in the first approach to 

and consequently 

t o +  T,~ 
T ~ -  2 ' 

To-T, 
r s -  r , ,  - 2 

Combining this with Eq. (12), we have 

ATp+ (T o -  TH),, 
T s -  TH = 2 

Introducing this expression into Eq. (11), we obtain the kinetic equation for the 
instrument of considered type: 

d A H  = 4nl,2~dTp+ C, dATp (12a) 
dt 2 dt 

Integration from the start of the reaction to the return of the curve to the base line 
yields 

A H  t = - 4rrl~2~ S A Tp dt = - K IA  , (13) 

The constant K1 in Eq. (13) is not in fact an instrument constant, but a characteristic 
of the sample, acting as a heat barrier with the parameters l, and 2,, and will 
therefore necessarily change when the reference material is exchanged for the 
sample. This means that calibration with reference materials is impossible. In 
addition, ).s changes to an unknown extent during the reaction, causing further 
difficulties in using Eq. (13) for quantitative computations. 

The specific heat of reaction AHo, from Eq. (13), is 

4nl~).~A, 42~A t 
AHo = - (13a) 

M ~oR 2 

In Eq. (13a), AH o = const and R = const, and consequently the peak area A t 

recorded is inversely proportional to the ratio ~ ;  from this respect, ).2 and 0 are 
Q 

effective values depending on the packing density of the sample (they become true 
parameters of the sample at maximum packing density). The formula (13a) is 
correct if ).~ and 0 do not depend on temperature and do not change during the 
reaction, while l, is large enough to allow neglect of marginal effects (heat exchange 
across the bottom of the cylinder). Physically, this corresponds to the condition 
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ls >14Rn [6]. If this condition is not observed, the following consequences will arise. 
When the sample holder contains a small amount of sample which will then not 
assume a cylindrical shape, but rather a spherical shape, the Fourier equation of the 
following form will hold: 

dQ _ 4nrZ2s d T  (13b) 
dt dr 

After transformation similar to that for the cylindrical sample, we obtain 

d T  ( d a r  + 2dT'~ 
(13c) 

at a~ ~r2 r dr ] 

d T  
The solution of this equation at ~ = const is the function 

T = T O + rpr2 (13d) 
6a 

where T O is the temperature at the centre of the spherical sample. The heat flow 
entering the spherical sample is 

dQ _ 4rrRZ2sRq~ 
- 8z2sR(Tn- To) (13e) 

-dt 3a 

Continuing analogously as above from Eq. (8) to Eq. (1 la), the kinetic equation for 
the spherical sample is found: 

dAH _ 8rcR2sATp + CsdATp (14) 
dt 2 dt 

Integration of Eq. (14) will then yield the formula for the specific heat of reaction: 

_ A H o  _ KA, _ 8rc2sRA t _ 62~1, (15) 
M 4/3;rR3Q oR 2 

Equation (15) is analogous to Eq. (13a); however, it demonstrates the dependence 
of the peak area A, on sample mass by reason of a mass increase of a spherical 
sample involving an increase of its radius, whereas a mass increase of the cylindrical 
sample in Eq. (13a) takes place as a result of increasing length, at an unchanged 
value of the radius. By expressing R in terms of M in Eq. (15), we have 

A, (MV'3 - 2~ \ ~ ]  (16) 

It is evident from what has been said that when small sample amounts are used with 
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the cylindrical sample holder, i.e. when the shape of the sample is close to spherical, 
the dependence A t vs. M expressed by Eq. (16) is to be expected; as the increasing 
sample mass leads to the cylindrical shape, Ar will become less and less dependent 
on M and will become practically independent of it when the condition ls >/4r is 
satisfied. This conclusion has been confirmed experimentally [1]. 

The dependence of constant K is Eqs (13a) and (15) on the properties of the 
sample, and the dependence ofA t on the extent to which the sample holder is filled at 
small sample amounts, mean that instruments of the considered type are practically 
useless for quantitative determinations. For this reason, instruments with special 
heat barriers came into use in calorimetry. The heat barrier consists of a solid shell 
enclosing the sample, the temperature sensor, a differential thennocouple or a 
battery of such thermocouples being fixed on the shell [2, 7]. This construction has 
the advantage that constant K does not depend on the thermal conductivity or 
density of the sample. 

2. Block-type instrument with a solid heat barrier 

To describe this type satisfactorily, and in particular to derive the kinetic 
equation describing its operation, it is necessary ~.o introduce an additional 
thermocouple at the centre of the sample, to increase the number of signal amount 
of information obtainable. The construction shown in Fig. 1 has a central 
thermocouple 1, located at the centre of the sample, and a lateral thermocouple 2, 
located on the interface between the sample and the solid shell. These ther- 
mocouples are connected alternately with thermocouple 3 (the reference ther- 
mocouple), located on the interface between the shell and the heater. The input of 
the amplifier of the differential recorder is alternately the output of thermocouples 
!-3 and 2-3, and two curves with peaks A and A2 are recorded on the diagram 
paper, correspoading to the incremental temperatures A Tp and A T2 (the pen of the 
recorder periodically passes from one curve to the other). Peak A1 is found as the 
difference between peaks A and A 2 ; it can also be recorded directly by connecting 
the terminals of the thermocouples 1 and 2 to the recorder. 

As shown in Fig. 2, during the heating regime the differential curve with peak A 
Cl 

proceeds below the curve with peak A 2 by a distance A Tal = - ~ z l  = - q~l K--~' 

where q~1 is the heating rate of the sample, C~ is the thermal capacity of the sample, 
and K1 is the thermal conductivity of the sample over the section 1-2. On the other 
hand, the curve with peak A2 proceeds below the zero line by a value equal to the 

- ~ o z ( C 1  + C2) 
temperature jump on the heat barrier of the cell, d TB2 = - q~2r2 -- K2 , 

where q~2 is the heating rate of the heat barrier, C2 is its thermal capacity, and K 2 is 
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,, ,, 

. . ," . l~Tz,! 

A2~ 

Fig. 2 Temperature diagram illustrating the theory of two-point DTA 

the thermal conductivity (heat transfer coefficient) of the heat barrier over the 
section 23. On passing from the regime without reference material to the DTA 
regime with reference material, thermocouple 3 is exchanged for thermocouple 2', 
located in the reference cell on the interface of the reference material and the shell 
(heat barrier); as a result, the value of the recorded temperature jump, A Tn2, will 
decrease (to zero, if the constant times z2 and r~ are equal and ~ = ~'). 

Use of a reference cell in this instrument type has the following advantages: 
(i) the recorded value A Tp is the maximum possible value, independently of whether 
or not the limiting condition ATp = 0 is satisfied at r = Rn ; (ii) the decrease of the 
value A Tn2 will save space on the diagram paper and will allow operation with a 
high amplifying coefficient of the differential record; (iii) the stability of the base 
line will increase, and its slope and bend will decrease [8]; (iv) it becomes possible to 
measure the thermal capacity of the sample via the difference signal, proportional to 
the difference between the thermal capacities of the sample cell and the reference 
cell, respectively, other experimental variables being kept equal. 

The mathematical conditions for this type are as follows: 

C'n=const  #0;  T o c T ~ r  

T s -  To+ T~ T~+ TH. dTn 
2 ; TD-  2 ' dt - q~=c~ 

(16a) 

dQ _ cBQBnI,(r2_ R2)t p + csQ~nl~R~ p (17) 
dt 

J. Thermal Anal. 31. 1986 
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I f r = R  n, then 

dQ 
dt 

- nl~R~ "(c~Q~- cBen)cp + c~QB~IsR~r p (17a) 

On the other hand, according to the Fourier law, for R~ <~ r<<. R u 

dQ _ 2r~rlflij dTn 
dt d r  

(17b) 

Solving the above equations jointly and integrating with respect to r from Ri to Ru, 
we find the law of temperature distribution on the heat barrier for steady-state 
heating regimes: 

(r, ,- T ,h ,  = 
(R 2 in Rn/ R~)( CsQ s -  CaoB)tp + 

22n 

+ CneB(R2-R2)tP 

42n 

(18) 

Let us express the heat flow emerging from the wall of the heater over the total 
temperature jump on the heat barrier. For this purpose we transform Eq. (17a) by 
means of Eq. (18): 

dO _ 2rds2z ~ R 2In Rn/R,(csQ~-cBoB)q~ + cBoa(R2- R~)q~ 1 + d' = 
dt in ~ [_ 22 B 42 n _1 

(18a) 
= K2(T u -  T,)~,+ A' 

where A' is a constant. 
During the reaction an incremental temperature jump A :/'2 will appear on the 

heat barrier, the heat flow then being equal to 

dQ _ K2[(Tn_Ti )s_AT2]+A,  = _K2dT2+Cnq~+Csq9 (18b) 
dt 

dT~ 
This heat flow is used up for the reaction, to heat the shell at a rate q~a = - ~ - a n d  to 

dTs. 
heat the sample at a rate tps - d t  " 

dAH + = d T  n C dTs dTn + ~  dT__Tfl (18c) 
d-----t- Cn--d-[- + ~ -d-[ = - K 2 A T 2 + C n - - ~  - ~ dt 
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and hence 

Since 

d A H  _ K2AT2 + Ca d(Ts -  Tn) I n )  
dt dt + C~ d(Tsdt 

aT2 = L -  T , , - ( T , -  T,,L, 

and utilizing the conditions for TB and T,, we have 

T n -  T n = Ti + Tn _ Tn - T i  - T n  _ AT2+const 
2 2 2 

(19) 

(19a) 

(19b) 

T , -  Tn - To + Ti _ Tn - T i -  Tn + T o -  Tn 
2 2 2 

(19c) 

Introducing this expression into Eq. (19), we obtain 

d A H  (CB+ C,) ddT2 C , d ( T o - T n )  
dt  = K2A T2 + ~ d ~  + 2 dt  (20) 

and in the integrated from 

A H  t = - K2A 2, 

K2 - - -  
2n12,~ a 

In R n / R  ~ 

2=l,& 
where K2 - In RHR i" 

It may be seen from Fig. 2 that 
To - Tu = 3 T 1 + A T 2 + const = a Tp + eonst and consequently 

d(To-  T,,) _ d a T  e 
dt dt 

(21) 

and Eq. (20) can be rewritten in the form 

d a n  C s ( d d T ,  dAr2"] C, da r2  
-d-7 - K2AT2+-2-\  dt + dt ] + 2 ~ -  (22) 

Equation (22) is the fundamental equation for computations for the block-type 
instrument with a solid heat barrier, which together with Eq. (21) permits kinetic 
and thermodynamic calculations by means of the thermal curves recorded. 

Let us now turn to the equation in which the incremental temperature /IT t 
appears. 
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According to Eq. (9a), the heat flow entering the sample during the reaction is 

dQ _ c~Q.~lrlsR29 _ 4rcls2~d T 1 = C,q~ + K~A TI (22a) 
dt 

solving the heat balance equation for the sample, we obtain an equation analogous 
to Eq. (l l):  

dAH 
dt - KIAT~ + Csd(T~-dt Tn) (22b) 

with the difference that T~- T n in this equation has another value, namely 

T ~ - T  n = 2 T ~  T~ - T  n = ATl+c~ + T o - T n  (22c) 
2 2 

Since (cf. Fig. 2) 

AT1 = T o - T i - ( T o - T , ) ~ , ;  T o - T n  = ATv+const, AT1 = A T v - A T 2  (22d) 

we finally obtain 

dA~/ _ K~(A~,-AT2)+ -=-_--~Cs(dAr' d ~ r 2 ~  
dt 2 \  tit + d t  // 

(23) 

The kinetics of the reaction may be calculated from either Eq. (22) or Eq. (23). They 
may also be utilized for joint correction of the constants K: and K2. 

Discussion of the assumptions applied in the theory 
of block-type instruments 

In the theory expounded above, the following major assumptions have been 
used: 

(i) The reaction studied is homogeneous, i.e. it proceeds over the volume of the 

~ t  . .  dar t  sample, and does not depend on a spatial coordinate (the term T in Eq. (10) 

refers to the whole sample and not to an elementary volume). 
(ii) The volumetric specific heat capacity cQ and the heating rate ~0 are 

independent of the spatial coordinate; thus, integration by volume can be replaced 
by multiplication by the volume (Eq. (9)). 

(iii) To simplify the computations, the parabolic temperature distribution is 
replaced by a linear distribution to determine the values of T~ and To. 

(iv) The values l~, 2~ and cQ are independent of the time of the experiment (the 
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transformation temperature and its extent), allowing the integration of Eq. (11 a) in 
the simplest manner. 

(v) The surface of the sample (the shell) at the height ls is isothermal during the 
dO time of the experiment, i.e. -~- is independent of the surface coordinate (TH- T~ is 

independent of Is). 
(vi) The thermal resistance is zero at the interfaces between sample and shell, 

shell and heater, heating surfaces and hot junctions of thermocouples. 
(vii) The heat exchange along the thermocouple wires is zero. 
By condition (i), the applicability of the theory is confined to reactions 

proceeding homogeneously, i.e. in the volume of the sample and not on its surface; 
condition (ii) assumes the homogeneous packing density of the sample in the 
holder, remaining unchanged during the reaction; condition (iii) places some 
constraint (from above) on the heating rate and on the values and rates of the 
thermal effects, since a linear approach to parabolic temperature distribution may 
only be applied at low values of these parameters; condition (v) indicates the 
necessity that a sufficiently large sample is needed to reduce marginal effects and to 
sustain the isothermalness of the surface; conditions (vi) and (vii) are particular 
requirements relating to the construction and to the positioning of the sample. 

In effective DTA instruments, practically all of the above conditions are violated 
to a greater or lesser extent. This is particularly the case for conditions (vi) and (vii). 
In existing constructions the sample shape is arbitrary and so is the packing density; 
the sample is positioned in a sample holder carrying a battery of thermocouples, 
whose hot junctions bear loosely against the surfaces of the heater and the sample 
holder. The non-tight fit of the different heat-transporting surfaces, the air gaps, the 
oxide films, and the various impurities give rise to thermal resistances not included 
in the theory, varying from experiment to experiment and during the experiment 
itself. In addition, the overall thermal resistance of the heat barrier is substantially 
reduced by heat exchange over the thermocouple wires located along the 
propagation of the heat flow and hence short-circuiting it, resulting in decreases in 
the measured signal and in the sensitivity of the instrument. 

The introduction of the solid shell as special heat barrier therefore only partly 
solves the problem that the instrument constant depends on the properties of the 
sample. Although the sample parameters 2s and O have been eliminated from the 
equation for K by this means, the parameter ls remains, involving the necessity of 
working with samples of definite shape and height. Simultaneously, specific 
difficulties arise owing to the non-homogeneous character of the heat barrier, 
composed of the material of the shell, the thermocouple wires, the air gaps, etc., 
participating with different shares in the overall thermal conductivity of the barrier, 
and depending differently on temperature, so that it is impossible to calculate the 
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instrument constant K 2 theoretically as a function of instrument parameters and 
experimental conditions. Obviously, the block-type instrument is too complex to be 
described by the simple theory expounded above, even if the number of signals 
(thermoanalytical curves) recorded is increased. The gulf between the theory and 
practice of calorimetry may be eliminated either by making the theory more 
complex (going into deeper detail), or by attempting to simplify the construction of 
the calorimeter to the maximum extent. From what has been said above, it follows 
that such a simplification must be carried out as follows: (i) The homogeneity of the 
heat barrier must be increased to an extent at which its thermal conductivity may be 
characterized by a single parameter, 2B, whose dependence on temperature is 
known. This can be achieved by reducing the quantity of heat-transferring surfaces 
and simultaneously eliminating uncontrolled thermal resistances in the path of the 
heat flow from the heater to the sample. (ii) The symmetry of the temperature fields 
(in other words the degree of isothermalness of the heat-transferring surfaces) must 
be increased. (iii) Heat exchange over the thermocouple wires must be eliminated. 
(iv) The definiteness of the shape and density of the sample in the holder must be 
increased. Sensing units based on these principles will be described in the second 

8 Yu. L. shishkin, part of this paper. 
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Zusammenfassung - -  Es wird eine ~bersicht fiber die Theorie der Sensor-Baueinheiten des Blocktyps 
gegeben. Die Zweipunktmethode der DTA wird beschrieben und geeignete Berechnungsformeln werden 
abgeleitet. Es wird demonstriert, dab existierende Sensor-Baueinheiten des Blocktyps sich nicht den 
Annahmen der Theorie anpassen. 

Pe3mMe - -  PaCCMOTpeHbl OCHOanble noylo~eHriS TeopHrl ~laTqnI~OB 6~OqHOrO Tnna. OnncaH MeTO~I 2-X 
To'~eqnoro ~[TA n np~fBe~aen abisozt ocnoam, lx pacqeTnbix qbopMy:~ 3TOrO MeTO~a. Hora3aHo, ~TO 
JlaTqHgrl 6aOqHOrO Tnna He y~ioaJteTsopamT 60.rlblIIHHCTBy TperoBaattfi (aonymennfi) TeopnI4, 
npnnaTOfi ~ a  onncauna pa6oTta aTnX ~aaTqnroB. 

J. Thermal Anal. 31, 1986 


